5-simplex |
Stericated 5-simplex |
||
Steritruncated 5-simplex |
Stericantellated 5-simplex |
||
Stericantitruncated 5-simplex |
Steriruncitruncated 5-simplex |
||
Steriruncicantitruncated 5-simplex (Omnitruncated 5-simplex) |
|||
Orthogonal projections in A5 and A4 Coxeter planes |
---|
In five-dimensional geometry, a stericated 5-simplex is a convex uniform 5-polytope with 4th order truncations (sterication) of the regular 5-simplex.
There are 6 unique sterications of the 5-simplex, including permutations of truncations, cantellations, and runcinations. The simplest stericated 5-simplex is also called an expanded 5-simplex, with the first and last nodes ringed, for being constructable by an expansion operation applied to the regular 5-simplex. The highest form, the steriruncicantitruncated 5-simplex is more simply called a omnitruncated 5-simplex with all of the nodes ringed.
Contents |
Stericated 5-simplex | ||
Type | Uniform 5-polytope | |
Schläfli symbol | t0,4{3,3,3,3} | |
Coxeter-Dynkin diagram | ||
4-faces | 62 | 12 {3,3,3} 30 {}×{3,3} 20 {3}×{3} |
Cells | 180 | 60 {3,3} 120 {}×{3} |
Faces | 210 | 120 {3} 90 {4} |
Edges | 120 | |
Vertices | 30 | |
Vertex figure | Tetrahedral antiprism |
|
Coxeter group | A5 [[3,3,3,3]], order 1440 | |
Properties | convex, isogonal, isotoxal |
A stericated 5-simplex can be constructed by an expansion operation applied to the regular 5-simplex, and thus is also sometimes called an expanded 5-simplex. It has 30 vertices, 120 edges, 210 faces (120 triangles and 90 squares), 180 cells (60 tetrahedra and 120 triangular prisms) and 62 hypercells (12 pentachora, 30 tretrahedral prisms and 20 3-3 duoprisms).
Its 30 vertices represent the root vectors of the simple Lie group A5. It is the also the vertex figure of the 5-simplex honeycomb.
The maximal cross-section of the stericated hexateron with a 4-dimensional hyperplane is a runcinated pentachoron. This cross-section divides the stericated hexateron into two pentachoral hypercupolas consisting of 6 pentachora, 15 tetrahedral prisms and 10 3-3 duoprisms each.
The vertices of the stericated 5-simplex can be most simply constructed on a hyperplane in 6-space as permutations of (0,1,1,1,1,2). This represents the positive orthant facet of the stericated hexacross.
The Cartesian coordinates in 5-space for the normalized vertices of an origin-centered stericated hexateron are:
Ak Coxeter plane |
A5 | A4 |
---|---|---|
Graph | ||
Dihedral symmetry | [6] | [[5]]=[10] |
Ak Coxeter plane |
A3 | A2 |
Graph | ||
Dihedral symmetry | [4] | [[3]]=[6] |
orthogonal projection with [6] symmetry |
Steritruncated 5-simplex | ||
Type | Uniform 5-polytope | |
Schläfli symbol | t0,2,3{3,3,3,3} | |
Coxeter-Dynkin diagram | ||
4-faces | 62 | 6 t0,1{3,3,3} 15 {}xt0,1{3,3} 20 {3}x{6} 15 {}x{3,3} 6 t0,2{3,3,3} |
Cells | 330 | |
Faces | 570 | |
Edges | 420 | |
Vertices | 120 | |
Vertex figure | ||
Coxeter group | A5 [3,3,3,3], order 720 | |
Properties | convex, isogonal |
The coordinates can be made in 6-space, as 180 permutations of:
This construction exists as one of 64 orthant facets of the steritruncated hexacross.
Ak Coxeter plane |
A5 | A4 |
---|---|---|
Graph | ||
Dihedral symmetry | [6] | [5] |
Ak Coxeter plane |
A3 | A2 |
Graph | ||
Dihedral symmetry | [4] | [3] |
Stericantellated 5-simplex | ||
Type | Uniform 5-polytope | |
Schläfli symbol | t0,2,4{3,3,3,3} | |
Coxeter-Dynkin diagram | ||
4-faces | 62 | 12 t02{3,3,3} 30 t02{3,3}x{} 20 {3}x{3} |
Cells | 180 | 60 t02{3,3} 240 {}x{3} 90 {}x{}x{} 30 t1{3,3} |
Faces | 900 | 360 {3} 540 {4} |
Edges | 720 | |
Vertices | 180 | |
Vertex figure | ||
Coxeter group | A5 [[3,3,3,3]], order 1440 | |
Properties | convex, isogonal |
The coordinates can be made in 6-space, as permutations of:
This construction exists as one of 64 orthant facets of the stericantellated 6-orthoplex.
Ak Coxeter plane |
A5 | A4 |
---|---|---|
Graph | ||
Dihedral symmetry | [6] | [[5]]=[10] |
Ak Coxeter plane |
A3 | A2 |
Graph | ||
Dihedral symmetry | [4] | [[3]]=[6] |
Stericantitruncated 5-simplex | ||
Type | Uniform 5-polytope | |
Schläfli symbol | t0,1,2,4{3,3,3,3} | |
Coxeter-Dynkin diagram | ||
4-faces | 62 | |
Cells | 480 | |
Faces | 1140 | |
Edges | 1080 | |
Vertices | 360 | |
Vertex figure | ||
Coxeter group | A5 [3,3,3,3], order 720 | |
Properties | convex, isogonal |
The coordinates can be made in 6-space, as 360 permutations of:
This construction exists as one of 64 orthant facets of the stericantitruncated 6-orthoplex.
Ak Coxeter plane |
A5 | A4 |
---|---|---|
Graph | ||
Dihedral symmetry | [6] | [5] |
Ak Coxeter plane |
A3 | A2 |
Graph | ||
Dihedral symmetry | [4] | [3] |
Steriruncitruncated 5-simplex | ||
Type | Uniform 5-polytope | |
Schläfli symbol | t0,1,3,4{3,3,3,3} | |
Coxeter-Dynkin diagram | ||
4-faces | 62 | 12 t0,1,3{3,3,3} 30 {}xt0,1{3,3} 20 {6}x{6} |
Cells | 450 | |
Faces | 1110 | |
Edges | 1080 | |
Vertices | 360 | |
Vertex figure | ||
Coxeter group | A5 [[3,3,3,3]], order 1440 | |
Properties | convex, isogonal |
The coordinates can be made in 6-space, as 360 permutations of:
This construction exists as one of 64 orthant facets of the steriruncitruncated 6-orthoplex.
Ak Coxeter plane |
A5 | A4 |
---|---|---|
Graph | ||
Dihedral symmetry | [6] | [[5]]=[10] |
Ak Coxeter plane |
A3 | A2 |
Graph | ||
Dihedral symmetry | [4] | [[3]]=[6] |
Omnitruncated 5-simplex | ||
Type | Uniform 5-polytope | |
Schläfli symbol | t0,1,2,3,4{3,3,3,3} | |
Coxeter-Dynkin diagram |
||
4-faces | 62 | 12 t0,1,2,3{3,3,3} 30 {}×t0,1,2{3,3} 20 {6}×{6} |
Cells | 540 | 360 t{3,4} 90 {4,3} 90 {}x{6} |
Faces | 1560 | 480 {6} 1080 {4} |
Edges | 1800 | |
Vertices | 720 | |
Vertex figure | irr. {3,3,3} |
|
Coxeter group | A5 [[3,3,3,3]], order 1440 | |
Properties | convex, isogonal, zonotope |
The omnitruncated 5-simplex has 720 vertices, 1800 edges, 1560 faces (480 hexagons and 1080 squares), 540 cells (360 truncated octahedrons, 90 cubes, and 90 hexagonal prisms), and 62 hypercells (12 omnitruncated 5-cells, 30 truncated octahedral prisms, and 20 6-6 duoprisms).
The omnitruncated 5-simplex is the permutohedron of order 6. It is also a zonotope, the Minkowski sum of six line segments parallel to the six lines through the origin and the six vertices of the 5-simplex.
Orthogonal projection, vertices labeled as a permutohedron. |
Like all uniform omnitruncated n-simplices, the omnitruncated 5-simplex can tessellate space by itself, in this case 5-dimensional space with 3 facets around each ridge. It has Coxeter-Dynkin diagram of .
Coxeter group | |||||
---|---|---|---|---|---|
Coxeter-Dynkin | |||||
Picture | |||||
Name | Apeirogon | Hextille | Omnitruncated 3-simplex honeycomb |
Omnitruncated 4-simplex honeycomb |
Omnitruncated 5-simplex honeycomb |
Facets |
The vertices of the truncated 5-simplex can be most simply constructed on a hyperplane in 6-space as permutations of (0,1,2,3,4,5). These coordinates come from the positive orthant facet of the steriruncicantitruncated 6-orthoplex, t0,1,2,3,4{34,4}, .
|
Stereographic projection |
These polytopes are a part of 19 uniform polytera based on the [3,3,3,3] Coxeter group, all shown here in A5 Coxeter plane orthographic projections. (Vertices are colored by projection overlap order, red, orange, yellow, green, cyan, blue, purple having progressively more vertices)
t0 |
t1 |
t2 |
t0,1 |
t0,2 |
t1,2 |
t0,3 |
t1,3 |
t0,4 |
t0,1,2 |
t0,1,3 |
t0,2,3 |
t1,2,3 |
t0,1,4 |
t0,2,4 |
t0,1,2,3 |
t0,1,2,4 |
t0,1,3,4 |
t0,1,2,3,4 |